Three-dimensional kinematics of saccadic and pursuit eye movements in humans: Relationship between Donders’ and Listing’s laws

نویسندگان

  • Matthew J. Thurtell
  • Anand C. Joshi
  • Mark F. Walker
چکیده

For Listing's law to be obeyed during eye movements, the "half-angle rule" must be satisfied: the eye velocity axis must tilt away from Listing's plane by half the angle of eye position eccentricity from primary position. We aimed to determine if this rule is satisfied during horizontal and vertical pursuit compared with saccades. Three-dimensional (3-d) eye rotation data were acquired from five normal head-fixed humans using the search coil technique. Saccades were recorded in response to 40° horizontal or vertical steps in target position, at different elevations and azimuths. Pursuit was recorded while tracking a target moving horizontally or vertically at 20°/s, with peak-to-peak amplitude of 40°, at the same elevations and azimuths. First- and second-order surfaces were fitted to 3-d eye position data from periods of fixation. In all subjects, eye positions did not lie on a planar surface, but on a twisted surface in 3-d space. The tilt-angle coefficient (TAC) during saccades and pursuit was calculated as the ratio of the angle of eye velocity axis tilt to the angle of eye position eccentricity. During horizontal saccades and pursuit, mean TACs were 0.58 and 0.64, respectively. During vertical saccades and pursuit, mean TACs were 0.35 and 0.43, respectively, and lower than their horizontal counterparts (p<0.05). These findings suggest that Listing's law is not perfectly satisfied during saccades or pursuit. On the basis of model simulations, we propose that the discrepancy in horizontal and vertical TACs causes eye positions to lie on a twisted rather than a planar surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant body kinematics: I. Saccadic and compensatory eye movements

A new invariant formulation of 3D eye-head kinematics improves on the computational advantages of quaternions. This includes a new formulation of Listing’s Law parameterized by gaze direction leading to an additive rather than a multiplicative saccadic error correction with a gaze vector difference control variable. A completely general formulation of compensatory kinematics characterizes arbit...

متن کامل

Functional anatomy of pursuit eye movements in humans as revealed by fMRI.

We have investigated the functional anatomy of pursuit eye movements in humans with functional magnetic imaging. The performance of pursuit eye movements induced activations in the cortical eye fields also activated during the execution of visually guided saccadic eye movements, namely in the precentral cortex [frontal eye field (FEF)], the medial superior frontal cortex (supplementary eye fiel...

متن کامل

Cortical networks subserving pursuit and saccadic eye movements in humans: an FMRI study.

High-field (3 Tesla) functional magnetic resonance imaging (MRI) was used to investigate the cortical circuitry subserving pursuit tracking in humans and compare it to that for saccadic eye movements. Pursuit performance, relative to visual fixation, elicited activation in three areas known to contribute to eye movements in humans and in nonhuman primates: the frontal eye field, supplementary e...

متن کامل

The kinematics of far-near re-fixation saccades.

We have analyzed the three-dimensional spatiotemporal characteristics of saccadic refixations between far and near targets in three behaviorally trained rhesus monkeys. The kinematics underlying these rapid eye movements can be accurately described by rotations of the eyes in four different planes, namely, first disconjugate rotations in the horizontal plane of regard converging the eyes toward...

متن کامل

The kinematics of far - near re - fixation saccades 1 Bernhard

25 We have analyzed the three-dimensional spatio-temporal characteristics of saccadic re26 fixations between far and near targets in three behaviorally trained rhesus monkeys. The 27 kinematics underlying these rapid eye movements can be accurately described by rotations of 28 the eyes in four different planes, namely first dis-conjugate rotations in the horizontal plane 29 of regard converging...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Vision Research

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2012